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Foreword

This report summarizes the research accomplishments performed under the NASA

langley Research Center Grant No. NAG 1-1749, entitled: "Application of the Spec-

tral Element Method to Interior Noise Problems," for the period August 1, 1995 to

July 31, 1998. The primary effort of this research project was focused the develop-

ment of analytical methods for the accurate prediction of structural acoustic noise

and response. Of particular interest was the development of curved frame and shell

spectral elements for the efficient computational of structural response and of schemes

to match this to the surrounding fluid.
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Introduction

This report summarizes research to develop a capability for analysis of interior

noise in enclosed structures when acoustically excited by an external random source.

Of particular interest was the application to the study of noise and vibration trans-

mission in thin-walled structures as typified by aircraft fuselages.

The basic idea of the research is to reformulate the structure-fluid interaction

problem using a matrix methodology based on the spectral element method. In

this way, a wave analysis of the problem is retained, yet complex structures can be

handled in a convenient manner. The analysis, which is formulated in the frequency

domain, is capable of providing detailed information on the response (in either the

time or frequency domains) to broad band excitation in any frequency range. The

two significant features of the problem, namely; that the loadings on the structure

are distributed and that the structures themselves form enclosed cavities (or cabins),

are handled well by this formulation.

The spectral element method is a powerful tool for wave propagation problems. It

is a matrix method based on wave solutions that exactly satisfy the governing equa-

tions and the boundary conditions. That is, the method exactly models the inertia

properties and therefore the elements can be large, in fact spanning the region between

discontinuities. Consequently, the system size is much smaller compared to a conven-

tional element formulation. Furthermore, the effects of damping, viscoelasticity, and

higher order structural models can be easily incorporated in the formulation.

This report focuses on three related topics. The first concerns the development of a

curved frame spectral element, the second shows how the spectral element method for

wave propagation in folded plate structures is extended to problems involving curved

segmented plates. These are of significance because by combining these curved spec-

tral elements with previously presented flat spectral elements, the dynamic response

of geometrically complex structures can be determined. The third topic shows how

spectral elements, which incorporate the effect of fluid loading on the structure, are

developed for analyzing acoustic radiation from dynamically loaded extended plates.





Chapter 1

Deep Curved Beams and Rings

Using the curved beam equivalent of Timoshenko beam theory, the spectral element

method is extended to problems involving curved members. By combining these

curved beam spectral elements with previously presented straight spectral elements,

the dynamic response of geometrically complex structures can be determined. Of

particular interest in this paper is the coupling that naturally occurs between the

axial and transverse degrees of freedom and how it affects the element formulation.

As an example of the utility of this element, the point excitation of an infinite curved

beam and a closed ring is demonstrated.



1.1 Introduction

There is considerable intrinsic interest in waves in curved beams because of their use

as arches, helical springs and rings, in such structures as aircraft fuselages and ship

hulls. Some idea of the range of applications can be found in References [1, 2, 3, 4].

There is also the special case of negligible bending stiffness which corresponds to waves

in cables and power lines; an interesting analysis of this is given in Reference [5]. This

paper is a continuation of References [6, 7, 8] which developed a matrix methodology

for analyzing wave propagation in complex frame structures. Specifically, we extend

the spectral element method to include deep curved beam elements.

Two elements are derived: a semi-infinite element, termed a throw-off element,

and a finite length element, termed a two-noded element. The throw-off element is

important in wave propagation problems since it is used to model remote boundaries

which do not reflect waves. Both of these elements exactly model the distribution of

mass and rotational inertia and thus can be of any length. While it is possible to

model a curved beam as a collection of straight or curved segments, as in conventional

element formulations [9, 10], the fact that spectral eh:ments can be very long dictates

that we use only one element between any two joints or points of discontinuity.

An interesting aspect of curved beams is the coupling that occurs between the

longitudinal and flexural degrees of freedom. The coupling is interesting in the fact

that purely axial or transverse excitations will cause both longitudinal and flexural

responses in the curved beam. Unlike straight beam modeling where the coupling

between the degrees of freedom occurs only at atta(hment nodes, the curved beam

possesses coupling at the differential level. That i.,_, the longitudinal and flexural

motion of the curved beam are coupled through the _,.quations of motion, and results

in a spectrum relation that is relatively complicated. Therefore a portion of this

paper is devoted to discussing the spectrum relation in some detail.

While curved elements can be combined with straight elements to form geometri-

cally complex structures, we will not emphasize that aspect of their use. Rather, we

wish to focus specifically on some of the wave propagation aspects. We look at two

problems: an infinite curved beam and a closed rinl,. The infinite beam is used to

demonstrate the coupling between the longitudinal _nd flexural degrees of freedom.

The ring illustrates how the point excitation of a sir lple structure can be viewed as

either a wave propagation problem, a vibrations problem, or a rigid body motion

problem.



1.2 Spectral Analysis of a Deep Curved Beam

Consider the curved beam segment shown in Figure 1.1. Following Reference [10],

the 2-D deformation of the beam can be approximated as

_(s, y, t) _ u(s,t) - y¢(s,t), _(_, y,t) _ v(_, t)

where u(s, t) is the mean mid-plane circumferential displacement, v(s, t) is the radial

displacement, and ¢(s, t) is a rotation about the mid-plane. This deformation leads

to the non-zero strains

Ou v 0¢ u Ov

Gs - Os R Y Os ' 5'_ = -_ + _s ¢

Other curved beam theories have slightly different expressions for these strains; the

present theory is closest to that of the Timoshenko straight beam [11]. The most

significant aspect of this strain-displacement relation is the non-zero centroidal strain

(at y = 0) even if v is the only deflection. This will give rise to the coupling of the

two displacements.

The strain energy for the small segment of curved beam in plane stress is

l fv [Ec.ssgr.GK/2y]dV___-2 if L [ ( 0U V)2_[ - E/(__8¢ ) 2 .nt_ {_AK1 (__ 0v
U=

7 7 _EA_as R' +as-¢).ds-z- )l

where E is the Young's modulus, G is the shear modulus; EA, GAK1 and EI are the

extensional, shear and bending stiffnesses, respectively; V is the volume and L the

segment length. Note that, as is commonly done, we have associated an adjustable K1

with the shear stiffness. Typically, this it can be taken close to unity; Reference [11]

gives a discussion of the choice of K1 for the flat Timoshenko beam. The total kinetic

energy is

T=_ p[_t2(s,y, y, _ [pAi_ 2 plK2_) _ pAi;:lds

where p is the material density. Here too we introduce an adjustable parameter/(2

to be associated with the rotary inertia. An application of Hamilton's principle [12]

using the variations with respect to 6u, 6v, and 6¢, leads to the three governing

equations of motion (for R=constant)

EA [ os2 R-_s - GAK1 -_ + R-_sss =

1 Ou vEA R Os R 2

EI

10u

+ GAK1 -_ +

02¢]
Os2j+GAKI[R

0% 0¢]Os2

Ov ]+G-¢

• OZu Ou

pd--_ + _lg-_-[

• O_v Ov

p A-_ff + rlA-_-_

_, 02¢ 0¢ (1.1)
pl_2-d_ + rlIK2-g-[
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F =--]A assdA = EA

and moment

where we have added some viscous damping 7?. The associated natural boundary

conditions are given in terms of the resultant forces

Ou v V -- o's_dA = GAK1 + _ss - ¢ (1.2)R '

M - - ashy dA = EI

acting on the cross-section, where the integration is over the cross-sectional area A.

When R becomes very large, the straight deep beam and elementary rod theories are

recovered.

Spectral analysis assumes solutions of the form

u(s,0 = _ _(s,_)e_t , v(_,t) = _: _(_,_)e_L, ¢(_,t) : _ 4(_,_)_t
(1.4)

where the summations are over frequency. When these are substituted into the govern-

ing differential equations, we get a set of ordinary differential equations with constant

coefficients. These have solutions of the form

_(s,_) : Uo_-'_", _(s,_) : Vo_-_k', _(_,_) : ¢o_-_

where k = k(w) is the wavenumber. In this repres(ntation, the amplitudes Uo, %,

¢o, and the wavenumber are as yet undetermined. On substitution these lead to the

homogeneous system of equations

al - GAKI/R _
-(EA + GAK_)ik/R

GAK_/R

with

ol I ---- _EAk 2 + pA_ 2 ,

(EA+GAK1)ik/R GAKI/R { Uo }
a_ - EA/R 2 ikGAK1 Vo

-ikGAK1 ola - GAK1 ¢o

=o (1.5)

ol2 --- -GAKlk 2 + pA(v :_, o_a =-EIk 2 + plK2(v 2

and _ =_ w 2 - iwr]/p. For a non-trivial solution, the determinant must be zero and

this allows us to determine k. This has six solutiom, in all, but since only k 2 terms

appear, there are three basic modes appearing as -t-k,_ pairs.

For each wavenumber kin, Equation (2.7) gives u:; the relation among the ampli-

tudes. This is homogeneous and therefore, at best, w:_ can only get amplitude ratios.

For example, we can solve for the remaining two terms as a function of Uo. Let us

write the solutions at a particular wavenumber km as

/ {1/vo = 'E, uo = { ,_}mUo

¢o m _0 m
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wherethe symbol _ indicatesan amplitude ratio. Although the vector {_} shownis

normalizedwith respect to uo, it is possible for other modal vectors to be normalized

differently. This must be done for each mode km and hence there are six vectors. We

choose to represent these as

[• ]= [ BI] -
tI)_b 1 (I)_b 2 (I)¢ 3 (I)¢ 4

where the [3 x 3] partitions [_A] and [_B] are evaluated at +kin and -kin, respectively.

The matrices [_m] and [_B] are referred to as modal matrices. They are fully popu-

lated matrices and typically are not symmetric. The normalizations are arranged so

that if we set _12 -- _13 -- _21 = _al = 0, the uncoupled straight beam solutions are

recovered.

For each mode, the corresponding amplitude uom is undetermined; to make the

notation resemble what we have already used, we will label each of the these A, B, .. •

The solution for the displacements can then be expressed as

= A_lle -ik_s + B@12e -ik2s + ... d- EdP15e +ik:s + F@16e +ikas

= A_21e -ik_8 d- B_22e -ik2s + ... d- Ec_25e +ik_s d- F_26e +ik38

= A_31e -ikLs + B(I)3_e -ik2s + ... + E_35e +ik_8 + Fc_36e +ikas (1.6)

where the terms _0 are the amplitude ratios. The coefficients A, B,..., F are to be

determined from the boundary conditions.

It is apparent that the spectrum relation plays a central role is the solution, and

since the characteristic equation is rather complicated, we look at its solution in

greater detail next.



1.3 Discussion of the Spectrum Relations

The characteristic equation to determine the wavenumber k is formed by setting

the determinant of system (2.7) to zero. To simplify the expressions, first introduce

the wavenumbers k2p - pA_2/EA, k2s = pA_2/GAK1, k_ - pI_2/EI, and k_

pAD2/EI. On expansion, we find the characteristic equation can be rearranged as

k 6 + a2 k4 + alk 2 + ao = 0 (1.7)

where

a2 = -(k_ + kl + k_+ 2/R_)
2 2 2 2 2 2

a I = kpk S + kpk, + ksk ! - k4B --(k2p --{- k2s - 2k_)/R 2 -_ 1/_ 4

no = (-k2p + 1/R2)(k2sk_ - k 4 - k2/R 2)

This has six solutions in all, but since only k 2 terms appear, there are three basic

modes appearing as +ki: one associated with the longitudinal behavior and two

associated with the flexural behavior. This can be seen by noting that for very large

R the characteristic equation can be factored into

(k: - k_)[k' - (kl + k_)k_- (k_ - klk_)]= 0

where the term in parenthesis is the characteristic equation for the longitudinal motion

in a rod [11] and the term in the square brackets is the characteristic equation for

the uncoupled flexural response of a Timoshenko beam [6]. In general, of course, the

modes are coupled and it is not proper to speak of a longitudinal mode or a flexural

mode.

Before we solve for the spectrum relations, it is be_Leficial to check certain features.

First, we see if there is a cut-off frequency; set k = 0 n the characteristic equation to

get

no = (-k2p + 1/R_)(k_sk_ - k_ - k_/R 2) = 0

After setting the damping to zero, this yields the tw(, cut-off frequencies,

_ 1 GAK1 _ 2Co1,f"_ co 4G_ +-

where h is the depth of the beam. The presence of a cut-off frequency is typical of

elastically coupled systems. It is interesting to note that wd depends on the radius of

curvature, while we2 is dominated by the beam depth. It is clear from the expression
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for we2 that for slender beams, this cut-off frequency is very large; this cut-off is

associated with the Timoshenko second mode.

Now look at when the frequency is zero, the characteristic equation can be factored

as
1 1

k2(k2- _)(k_- _) = 0

Only one root goes through zero, the others are a double root on the real axis.

We must solve a cubic equation in order to get the full behavior of the spectrum

relations. The formulas for doing this are more complicated than for the quadratic

equation and can be found in Appendix A. Figure 2.2 shows the first three spectrum

relations, these correspond to propagating waves, and are characterized by a negative-

only imaginary component. To emphasize the coupling, the plot is for an aluminum

beam that is 100 mm (4.0 in) deep with a radius of curvature, R = 100 mm (4.0 in).

We clearly see the cut-off frequencies in the first and third modes. Note that k3 has

a negative real component at low frequencies and it might therefore be thought that

this violates the radiation condition for waves propagation in the positive direction.

In our approach, the wavenumbers always have an imaginary component -- even

predominantly real-only modes such as k_ have an imaginary component arising from

the damping. Thus the criterion is based on dissipation of energy in the positive

direction. A negative real component is expected to lead to a standing wave.

For the later examples, we will use an aluminum beam that is 25.4 mm (1.0in)

deep with a radius of curvature, R = 254mm (10.0in). The spectrum relations

for this beam are plotted in Figure 1.3. Only the cut-off frequency in the first mode

appears in the frequency range of interest. In the low frequency region (0-500 Hz), we

see some coupling effects due to the thickness of the beam. This coupling diminishes

as the radius of curvature increases.

In order to better understand what the spectrum relations are doing, it is worth

while to consider a set of approximate spectrum relations. The three roots of the

characteristic equation with relatively large R/h ratio can be approximated nicely

from the straight beam case as

i 1kl = + k_ R2

k_ = + _ + (k_+ kg)+ k_ + _(k_- kl)_+ 4R---_

k_ = + _-_ + (k_+ k_)- k_ + _(k_ - kl)_+ 4R--_ (1.8)



where kl is the longitudinal dominated mode and k2 and k3 are the flexural dominated

modes. These approximations, also plotted in Figure 1.3, allow us to make a few

statements about the behavior of the coupling. In comparison to the uncoupled

modes, the major effect is in the longitudinally dominated mode. It can be seen that

the behavior is similar to a rod with elastic constraint [11], that is, it is imaginary-

only up to the cut-off frequency and then becomes real-only. Thus the low frequency

components evanesce indicating a transfer of energy to the other modes. The 1/2R 2

terms in k2 and k3 are acting like a compressive pro-stress on the beam [11]. This

has the effect that for the propagating flexural mode the group speed is increased

indicating an effective increase in stiffness. However, the coupling generally will not

cause drastic changes in the spectrums of the flexural dominated modes. Indeed, if

h _ R/100, it is clear from Figure 1.3 that the only difference is in the first mode.

Finally, notice how the spectra are almost identical to the uncoupled spectra at the

higher frequencies.
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1.4 Point Excitation of a Curved Beam

As a prelude to considering curved beams of finite length, we begin by looking at

the point excitation of an infinite curved beam; physically this would mean that the

beam is in the form of a helix. We will use two types of force histories, one that is

relatively broad-banded in frequency and two that are relatively narrow-banded, in

order to demonstrate how the coupling of the modes changes with frequency. These

are shown, along with their normalized amplitude spectrums, in Figure 1.4.

Our approach to the solution parallels the problems presented in References [6, 8,

11]; what makes this case interesting is that we now have three coupled modes. The

solution for the forward propagating terms is written as

$(s)

= A_Pll e-ik_s + B_12e -ik2s -4- C_13 e-ik3s

= A_21e -ik_ A- B_22e -ik2s A- C_223e -ik3s

_=_ Aq231e-ikl s + BffP32 e-ik2s + C¢_33 e-ik3s (1.9)

From the free body diagram of the excitation region of the infinite beam it can be

shown that at the loading site s = 0,

u(O,t) = O, ¢(O,t) = O, V(O,t) = -½P(t)

where we are considering a transverse impact. The first two of these allow the solution

to be written as

_- A[_ll e-ikls -4- 0l_12 e-ik2s --F /3_13 e-ikas]

= A[q221 e-ikls -_ 0_¢_22 e-ik2s -4- l_23 e-ikas]

= A[dP31e -ikls + 0_32 e-ik2s -4- /3_33 e-ik3s]

where the coefficients a and/3 are given by

(_11(_33 -- (I)31(I)13

(I)12(I)33 -- (I)32(I)13 '

We determine A from the shear relation

-½P = V = GAK1

After differentiation, this leads to

2GAK1 [ql + aq2 +/3q3] '

(I)11(I)32 - (I)31 (I)12

(I)13(I)32 -- (_33(_12

1
qm = "--_Olm - ikl q22rn - O3m
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The solution is arrangedso that if we set R = oc then ¢12 = (I)1_ = (I)21 = (I)_l = 0,

and the uncoupled straight beam solution is recovered. Care must be taken, however,

in order to approach the proper limit since both a and beta approach infinity. It turn

out that c_//_ -_ 1 in the limit and we get, for example,

-P [e_ k2s_ e- k3sl
¢(s) = 2EI(k_ - k_)

Note that the spectrum relations also change.

The velocity reconstructions for the broad band input are shown in Figure 3.2.

There are two points of interest. First, note how the initial zero axial velocity even-

tually becomes significant. Second, note the oscillatory behavior of the transverse

velocity. Although the force excitation lasts only about 200 #s, the beam near s -- 0

continues to oscillate in an almost resonant like fashion. Actually, a standing wave

has been established. The figure also shows the separate contributions from each

mode for the response v(s -- 3R, t). It is clear that the first mode is contributing the

ringing behavior.

This is more evident when we look at these velocity responses in the frequency

domain. It is clear in Figure 2.8 that there is a peak in the v-velocity response which

corresponds with the cut-off frequency. Furthermore, this peak is coming entirely

from the first mode. The broadband excitation has identified the cut-off frequency in

the first mode.

A final point of interest for this example looks further at the effect of the cut-off

frequency in the longitudinal mode. Below this frequency there is only one propa-

gating mode in the beam, while above the frequency two propagating modes exist.

To illustrate this point, we excite the curved beam with the narrow banded force

histories shown in Figure 1.4. The pulses are chosen so that they just bracket the

cut-off frequency. Figure 1.7 clearly shows the pres_nce of the second propagating

mode above the cut-off frequency. Note that the two propagating modes are present

in both the transverse and longitudinal responses bit the amplitude ratios are dif-

ferent. This plot is emphasizing the nature of the _olution of Equation (2.8) as a

collection of mode responses.
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1.5 Spectral Element Formulation

As seen from the point excitation example of the last section, the formulation, al-

though relatively straight forward, requires a significant amount of manipulation. A

similar approach for connected curved beams or even for a finite curved beam would

be very cumbersome, hence we now develop a matrix formulation to facilitate these

manipulations.

Consider a segment of curved beam of length L.

displacements as

We begin by expressing the

= AC_lle -ikls + Bc_12e -ik2* + ... + E_15e -ik2(L-s) -k F_16e -ika(L-s)

= A_21 e-ikLs + B_22 e-ik=s + ... + E_25e -ik2(L-s) q- F_26e-ika(L-s)

= A_ale -ikL* + B_32e -ik=* + ... + E_35e -ik_(n-s) + F_36e-ika(L-s_l.lO)

The length is introduced to include reflections coming from a boundary located at

s = L. This displacement solution can now be re-written as

=

= { }lAe-'kLs+...+

We will re-write this in an even more compact matrix form; so as to make the matrix

notation a little more accessible, we will take the developments of the rod as the

archetype and use its notation (except changed to matrices). The 1-D solution for a

rod [11] is represented as

= +

where A and B are associated with the forward moving and backward moving waves,

respectively. The displacement for the curved beam is written as

{/.g}(s) = [(}A][e(s)J{A} + [_PB]Fe(L- s)]{B}

were [_A] or [_B] are the [3 x 3] partitions of[ _p ] and

Fe(s)J __ 0 e -k2* 0 , {A} = B , {B} - E
0 0 e -ikas C F

It is the presence of the amplitude ratios that is the most significant difference.

We wish to replace the vectors {A} and {B} in terms of the nodal displacements

at s = 0 and s = L. That is, we introduce

fi(0)=fi,, _5(0)=_1, ¢(0)=¢1; _(L)=_2, ©(L)=_52, ¢(L)=¢2



13

We write this in matrix notation as

{_,, ?),,[p,}T= {u}, = {u}(s = 0) = [(I)A]re(0)J{A}-[(_B]Ie(L)J{B}

{?_2,?)2,(_2}T = {u}2= {u}(8= L) = [@A]re(L)J{A} -[(I)B]Fe(0)J{B}

Let us write all six equations as

{{u}, {A}{u}2} = [QI{{B}}

Solving for the coefficients gives

where each partition of [ G ] is of size [3 x 3]. We are now in a position to write the

displacements in terms of the shape functions. They are

{u}(s) = [g(8)],{_},+ [a(8)]_{_}2 (1.11)

where the [3 x 3] matrix of shape functions are defined as

[9(8)11 = [d;A][e(s)J[GI,] + [':I'BIFe(L - s)J[G21]

[g(s)]2 = [_A]Fe(s)J[G12] + [¢bBl[e(L - s)J[G221 (1.12)

There are a total of 3 x 3 x 2 = 18 shape functions in all. While not obvious from the

above, it turns out that, even in this general case, the collection of shape functions

associated with the degrees of freedom at the seconi node are the mirror image of

the first set.

Figure 3.6 shows the g22(s) shape function of a 270 ° beam segment at a number

of frequencies. This shape function is associated wil h the 91 degree of freedom and

thus can be plotted as a radial displacement off the original shape. It is similar to

conventional shape functions except that it is frequency dependent, typically com-

plex, and can represent the behavior of very large b,,am segments. The other shape

functions behave in a similar manner. It is clear fronL this figure and from the above

developments, that once the nodal degrees of freedom are determined that the shape

functions can be used to compute the responses at any intermediate locations. This

is a crucial attribute since the beam segments or elements can be very long.

The next step in the element development is to (erive a stiffness relation for the

beam segment. The process is simply that of explessing the resultant forces and

moments from Equations (2.5) and (1.3) in terms of lhe displacement solutions given



14

in Equation (2.12). We canwrite resultants associatedwith the boundary conditions

in terms of the displacementsin matrix form as

{gV}(s) = {F, V, M}T(s) = [ 0 ]{/d}(s)

where [ 0 ] is the matrix collection of differential operators of size [3 x 3].

substituting for {U}(s) in terms of the shape functions get

{y}(s) = [ o ][9(s)],(u}, +[ o

- +

After

(1.13)

Relating the member resultants at s = 0 and s = L to the nodal loads at the same

locations leads to the stiffness relation

{F}2 [+Og(L)]l [+cgg(L)]2

or simply

{?} =

where [ /_ ] is the [6 x 6] dynamic element stiffness matrix. This stiffness matrix is

frequency dependent, complex, and symmetric.

For illustrative purposes, Figure 2.4 shows the normalized ]_n, k22, and _:3a diago-

nal terms for the same beam used to illustrate the shape functions. As is typical with

spectral elements, they exhibit a very large dynamic range. The normalizations are

with respect to the stiffnesses for straight thin beams [12]. That is, they are presented

as

kl,/(EA/L) , k22/(12EI/L3) , k33/(12EI/L)

Note that the /_11 stiffness is substantially less than the elementary rod values, and

it is only after the cut-off frequency (_ 3 kHz) does it become greater than unity.

This can be understood by considering the static (low-frequency) axial loading of the

beam fixed at one end -- because of the curvature, the axial load creates a moment

and consequently, the beam has a great deal more flexibility than the corresponding

straight case.

The stiffness relation for the throw-off or semi-infinite element is simply

{F}, = [-Og(O)],{u}l = [/¢(w)]{u},, [g(s)], = [42A][e(s)J[G,, ] (1.15)

The stiffness matrix in this case is a [3 x 3] frequency dependent, complex and sym-

metric matrix. This can be used to recover the results presented for the impact of an

infinite or semi-infinite curved beam

{?} _" {?1, V1, J_l; ?2, _'r2, J_2} T , {u} --_ {Ul, /)1, (_1; _2, 792, _2} T
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1.6 Point Excitation of a Closed Ring

The advantage of the curved element is that it can be combined with other elements,

either flat or curved to form significantly more complex structures. References [6, 13]

discuss the programming structure required for multiply connected spectral elements.

However, we will not emphasize this aspect of their use, rather, we will perform the

example of the point excitation of a closed ring. The example demonstrates the basic

method of joining elements in addition to demonstrating the utility of the spectral

method.

We form the closed ring by combining two curved elements of the same material

properties each of which is a half-circle. Because of symmetry, we could model the

ring with a single half-circle element or as a single whole-circle element. In the latter

case half of the applied load must be placed at each node and the extra conditions of

ul = 0, ¢1 = 0; u2 = 0, ¢2 = 0 be imposed. The two element model was chosen so as

to verify the assemblage process.

The elements can be joined at the common nodes by merely summing together

the appropriate dynamic stiffness matrix components to form a global stiffness matrix

[/_ ]. We must therefore first rotate each element stiffness to this global system. The

transformation requires the use of a simple [6 x 6] rotation matrix [ T ] that is of the

form

i l=[I /o/l0 ]0
where R(0) is the [3 x 3] rotation matrix [12]. This ;akes into account that the ends

of the curved element are oriented differently to each other. In the plane case, if the

nodal coordinates are (xl, Yl) and (x2, yJ, then with 2p = _/(x2 - xl) 2 + (y_ - yl) 2

and q = x/R 2 -p2, the angles are given by

(x2-xl)q¥(y2-_] ' fl = tan-1

Since only two elements are present, we will assign the coordinate system of one to

be the global coordinate system and rotate the othe:'.

The matrix [ T ] transforms the vectors of nodal displacements and nodal forces

to the global system as follows

: iT : iT

where the barred quantities represent the local coordinate system. As a consequence,

the element stiffness matrix in global coordinates ca 1 be written as

[i,. ] = [T]T[ _ ][T]
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The global stiffness matrix is then simply formed by adding the two global element

stiffness matrices together.

With the elements connected, we can now determine the responses of the closed

ring due to a point excitation. The velocity reconstructions for three points, 0 =

0°, 90 °, 180 °, along the ring are shown in Figure 2.5. For comparison purposes, the

same ring was modeled using 64 straight Timoshenko spectral elements. The two sets

of results are indistinguishable.

Unlike the previous example of an infinite curved beam, there are multiple re-

flections occurring. The waves are traveling around the ring and interacting with

each other. From Figure 2.6, we can see that many resonance frequencies are being

established. These would be the frequencies of interest if a vibration experiment were

being performed. It is interesting to note that the v response at 90 ° is missing many

of the intermediate resonances, but these are present in the u response. Furthermore,

we see the effect of the first mode cut-off frequency in the v responses but not in u.

This is consistent with Figure 2.8 for the infinite beam.

As a final illustration of the results, we integrate the velocity responses for the

ring to determine how it is deforming over time. Figure 1.12 illustrates the exag-

gerated deformation (multiplication by 300) of the ring due to the point excitation.

It is interesting to note the rigid body motion that is occurring although it was not

specifically addressed in the solution. On the time scale shown, the problem reduces

simply to a transfer of momentum. The force transfers an impulse of about 0.31 Ns

to the ring of mass 2.80 kg, thus the force should cause the ring to move at about

ll3mrn/s. From the figure, we can approximate the ring velocity as 103 minis, the

difference being due to the damping present in the modeling.

The flexibility of the spectral element approach has allowed us to view the prob-

lem of the impact of a ring as one of wave propagation, or vibration, or rigid body

dynamics. This comes about because of the convenience in alternating between the

time and frequency domains.
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1.7 Discussion

A deep curved beam element was developed that extends the variety of problems the

spectral element method can handle. One of the challenges that arose during the

development was the problem of determining the spectrum relations. Even though

cubic solvers are well known, it is not always certain which branch should be chosen

after a branch point occurs. In the quadratic case, which occurs for straight beams,

the ambiguity is removed by adding damping. This becomes essential in the cubic

case so that the phase of each kin(w) can be tracked correctly. The effect of the

damping is to separate each of the modes. With this separation, we can also reliably

identify the associated amplitude ratios.

The element developed possesses all of the features of the spectral element method

which make the method desirable for solving dynamic problems. Primary among these

are that the element can be very long and that the frequency domain formulation

allows the system response functions to be determined automatically. This latter

attribute, along with the fast Fourier transform, enables a duality between the time

domain and frequency domain to be presented conveniently. Information not readily

seen in one is often detectable in the other. The example problems demonstrate these

features.
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Appendix A: Computing the Spectrum Relations

The formulas used to solve the characteristic equation are based on References[14,

15]. By replacing k 2 with z, the characteristic equation can be re-written as

za+a2z2+a_z+ao=O

where the coefficients are insured of being complex by adding damping to the system.

Now compute the terms

q = (a22 - 3al)/9, r = (2a_ - 9a2al + 27ao)/54

and

S, = --[r -t- _T 2 -- q311_

The three roots are then given by

82 =

-q

[r + _ 1t3

Zl ---- (81+82)__ _a21

1 1 -1
Z2 ---- --_(81-[-82)-- _a2 + _(s, -s2)v/3

__ __l l i½(sl 82)vf3Z 3 -- _(S1 -_-82)-- _a2 -- _

The six spectrum relations are given as +v/-z.

A difficulty arises in choosing the appropriate square or cube root since we wish

to compute single zj at a time. The issue is that while the n th root of a complex

number z is given by

z = a + ib = Ae i* , z 1/. = A l/nei¢/n

the phase ¢ = tan -I (b/a) has an ambiguity of N_r. We remove this ambiguity by

keeping track of the total phase. That is, starting with some value and with reference

to the unit circle in the complex plane, as the wavenumber goes from the 4 th to the

1st quadrant the total phase is increased by 27r. Conversely, if the wavenumber goes

from the 18t to the 4 th quadrant the total phase is decreased by 27c. The n th root is

then given by

z 1/. = A 1/nei(¢_+N_)/n

This scheme works quite robustly when the frequency increment is not too large.
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_R V,v; M,¢; F,u

Figure 1.1: Coordinate system and resultant lo_ds for a deep curved beam.
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Figure 1.7: Velocity responses due to narrow banded point excitations.
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Figure 1.11: System response functions for the point excitation of a closed ring.
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Figure 1.12: Deformed shapes (displacements scaled by 300) of a ring due to a point

excitation. Time intervals are every 750 #s.



Chapter 2

Long Segmented Cylindrical Shells

The spectral element method for wave propagation in folded plate structures is ex-

tended to problems involving curved members. By combining these curved spectral

elements with previously presented flat spectral elements, the dynamic response of

geometrically complex structures can be determined. Of particular interest in this

paper is the coupling that occurs naturally between the in-plane and transverse de-

grees of freedom and how it affects the element formulation. As an example of the

utility of this element, the point excitation of an infinite curved shell and a closed

cylinder is demonstrated.

31
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2.1 Introduction

There is considerable intrinsic interest in waves in curved members because of their

use in such structures as arches, containment vessels, aircraft fuselages, and ship hulls.

Some idea of the range of applications is described by Gould (1988) and thorough

treatments of their formulation are given by Leissa (1973) and Markus (1988).

A frequency domain matrix methodology for analyzing wave propagation in com-

plex folded plate structures was developed by Rizzi and Doyle (1992), Danial and

Doyle (1995), and Danial et al (1996). This paper is a continuation of those researches

but now extended to include curved segmented shells. At present, we consider only

circular uniform cylinders but the segments can be of arbitrary length in the hoop

direction. (In this way it is different from the finite strip method described by Hinton

et al (1995).) Two spectral elements are derived: a single noded semi-infinite throw-

off element, and a finite length two-noded element. Both of these elements exactly

model the distribution of mass and thus can be of any length.

A flat plate element has eight degrees of freedom (Danial et al, 1996) and the

assembled [8 x 8] stiffness is achieved as a combination of two [4 x 4] elements plus

a rotation matrix. But the curved element has all eight degrees of freedom coupled

and hence we must tackle the stiffness matrix directly as an [8 x 8] system. This is

too cumbersome to do explicitly; consequently, we lay out a computer based method

for establishing the shape functions and subsequently, the stiffness matrix. This

adds to the computational burden, but as compensation we get an approach that is

conceptually simpler and helps to unify the special results established in the earlier

references.

An interesting aspect of shells is the coupling that occurs between the in-plane

and flexural degrees of freedom. Unlike folded plate modeling where the coupling

between the degrees of freedom occurs only at attachment nodes, the curved shell

segment possesses coupling at the level of the differential equations of motion. This

results in a spectrum relation that is relatively complicated. Therefore a portion of

this paper is devoted to discussing the spectrum relation in some detail.

While curved shell segments can be combined with flat elements to form geomet-

rically complex structures, we will not emphasize that aspect of their use. Rather,

we wish to focus specifically on some of the wave propagation aspects. We look at

two variations of a closed cylinder problem. The first is used to verify the accuracy

of the formulation while the second explores the nature of the wave reflections in the

hoop direction.
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2.2 Spectral Analysis of a Cylindrical Shells

There are a variety of statements of the governing equations for shells; to be consistent

with the Danial et al (1996) paper, we briefly summarize the derivation. To this end,

we find it most expedient to first specify the deformation, obtain the strain and kinetic

energies, and then use Hamilton's principle to derive the equations of motion and the

appropriate boundary conditions.

Consider the segment of cylindrical shell shown in Figure 2.1. The shell has a

radius R, thickness h, and is considered long in the y-direction. The 3-D deformation

is approximated as

Ow

Ow

_(s,y,z) _ v(s,y)-z_
_(s,y,z) _ w(s,_)

(2.1)

0u iou 
qs - R +_-z\Os 2 + ROs]

Ov 02w

_, = _ - z-_y_ (2.2)

2esy Ov Ou [ 02w 10u_

Other shell theories have slightly different expressions for these strains; the present

theory is closest to that of Reissner (1946) and Naghdi (1964). Excellent surveys

of the different theories are given by Leissa (1973), and Markus (1988). The theory

developed here is the shell equivalent of the classical plate theory and the Bernoulli-

Euler beam theory.

An application of Hamilton's principle (Doyle, 1991) leads to the three governing

equations of motion (for R = constant)

--OUu . cO2u c3Uv 1 i*w.

E[_s2 + ½(1 - U)_y 2 + ½(1 + v) -0Wy _-0-;J
1 .02u , O_u 03w 03:v

+_-:Di_s2 + ½(1 - U)_y 2 + R(_ +ay_as _s _)]

- ]0--25_y+_,z:+½(_ ")o: R_

(9 2 U OU

= ph--_ + 77h--_

.0% Ov

= oh--oV+ _h-#i

the non-zero strains

where u(s, y) is the mean mid-plane circumferential displacement, v(s, y) is the length-

wise displacement, and w(s, y) is the radial displacement. This deformation leads to
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E. 10u v Ov w (2.3)
- t-_G + ROy _]

04w 04w 04w. 1 . O_u 03u .02w Ow

+D["_s4 + 20s--_0y2 + -_y4] + _Dt_ + --_-d] = -Ph-o--_ -_h-_

where v is Poisson's ratio, D =- Eha/12(1 - u2), and /_ = Eh/(1 - u2). We have

added some viscous damping through the r/terms.

Let the virtual work of the applied loads be

Ow

5V = -QuSu - OvSv - QwSw - Q¢5¢, ¢ - Os

then Hamilton's principle also gives the associated boundary conditions on the side

s = constant as:

u or

v or

w or

Ow

¢ Os or

[Ouw Ov] l ro2w l Ou O=wl

Qv : ½( l _ v )E [ OV__s+ O_yy]

Q"'=R Lo_+(1-'/o--_j_] -D -b-V+(2- a_oy_j

Q_= D Las2+ _-Ty_+ R 0sJ

We can form the resultantsper unit length as

Nss -- / ass dz , Nsy =- / a_y dz , M. - -/ a_szdz ,

(2.4)

f

Msy _ -] (TsyZ
dz

where the integrations are over the cross-section. After substituting for the stresses

and strains in terms of our approximations, we get that the natural boundary condi-

tions are equivalent to specifying

1

Q,, = N_s+--_M_

Q. = Nsy

Q_ _ OM_ 2 0M_y - V_z
Os Oy

Q¢ = M_ (2.5)

The first of these resembles the resultant load expression used for curve beams (Bilodeau

and Doyle, 1997), while the third resembles the Kirchhoff shear stress relation (Doyle,

1997).

Spectral analysis assumes solutions of the form

N M

u(_,_,t) = _2 _2 _(s,_-,_m)_-_°_,
n=l m=O

21r m 27r n

_"- W w_- T (2.6)
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where W and T are the space and time windows, respectively. The use of these

representation is documented by Danial and Doyle (1995). In this paper, we limit

ourselves to problems that are symmetric about y = 0 and use cos(_my) with u and w,

and use sin(_my) with v. When these are substituted into the governing differential

equations, we get a set of ordinary differential equations with constant coefficients.

These have solutions of the form

where k = k(03, _) is the wavenumber. In this representation, the amplitudes Uo, Vo,

Wo, and the wavenumber are as yet undetermined. On substitution, these lead to the

homogeneous system of equations

a, - [k 2 + (1 - v)_2]D/R 2 -7
OL2

7[E + (k 2 + _2)D]ik/R -vE_/R

using

IF, + (k 2 + (2)D]ik/R"

+ F /R2 {uo}Vo

Wo

=0 (2.7)

ce 2

l(1_ _)_2] + phCo2_ 2+

_ _j_[(2 + ½(1 - v)k 21 + ph_ 2,

3' -- ½(1 + v)Eik_

a3 = D[k 2 + _212 _ phi2

and cO2 - 032 - i0371/p. The al, a2 and 7 terms alone define the flat membrane

problem, while a3 alone defines the fiat plate fiexur fl problem. All the other terms

are couplings. For a non-trivial solution, the determiLant must be zero and this allows

k to be determined. This has eight solutions in all, but since only k 2 terms appear,

there are four basic modes appearing as +kj pairs.

For each wavenumber kj, Equation (2.7) gives the relation among the amplitudes.

This is homogeneous and therefore, at best, we can only get amplitude ratios. For

example, we can solve for the remaining two terms as a function of Uo. In anticipation

of a later need, we add ¢o = -ikwo and write the solu,ions at a particular wavenumber

k as

{%}{1}V o (I) v

Wo = Uo= i' }jUo

¢o j _¢ j

where the symbol (b indicates an amplitude ratio. Although the vector {(b} shown is

normalized with respect to Uo, it is possible for other modal vectors to be normalized

differently. This must be done for each mode kj ani hence there are eight vectors.
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We chooseto representtheseas [ _ ]= [[CA],[_S]] where

l/o}]CoAl- ? ?
(1)¢ 1 (I)¢ 2 (I)¢ 3 (I)¢2 4

and [Ou] is the same but evaluated at the wavenumbers -kj. That is, the [4 × 4]

partitions [OA] and [OB] are evaluated at +kj and -kj, respectively; they are fully

populated and typically are not symmetric. The normalizations are arranged so that

the uncoupled flat plate solutions are easily recovered.

For each mode, the corresponding amplitude Uoj is undetermined; to make the

notation resemble what we have already used, we will label each of the these A, B, ....

The solution for the displacements can then be expressed as

fi(s) = A(Ihle -ikts + B(_12e -ik_s +... + G(IhTe +ik3_ + H(Ihse +ik4_ (2.8)

with similar expressions for _, _, and ¢, but involving the amplitude ratios @2j, _3j,

and O3j, respectively. The coefficients A, B,..., H are to be determined from the

boundary conditions.

It is apparent that the spectrum relation k(w, _) plays a central role in the solution,

and since the characteristic equation is rather complicated, we look at its solution in

greater detail next.
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2.3 Discussion of the Spectrum Relations

The characteristic equation to determine the wavenumber k(w, _) is formed by setting

the determinant of system (2.7) to zero. On expansion, we find the characteristic

equation can be rearranged as

k 8 + A_k 6 + A2k 4 + Alk 2 + A0 = 0 (2.9)

The expressions for the coefficients An are too complicated to be listed here. This

has eight solutions in all, but since only k 2 terms appear, there are four basic modes

appearing as +kj: two associated with the in-plane behavior and two associated with

the flexural behavior. In general, of course, the modes are coupled and it is not proper

to speak of a membrane mode or a flexural mode.

We must solve a quartic equation in order to get the full behavior of the spectrum

relations. While the formulas for doing this are relatively straight-forward, they cause

some difficulties which are worth discussing.

Following Abramowitz and Stegan (1965), we first write the characteristic equation

as the conjugate factorization for z = k _

This allows z to be determined from a sequence of quadratic equations. The coeffi-

cients appearing in the above are

a = gAa, b = 8c+ A_ - 4A2, d = - A0

and c is chosen as a solution of the cubic equation

1 1 2
ca - 1[A2]c2 + -_[A1Aa - 4A0]c + -_[AoA 3 + A_ - 4AoA2] = 0

The formulas to solve the cubic equation are basei on those of Abramowitz and

Stegan (1965) and Press et al (1992). We first write the equation as

c3 + a2c 2 + alc + ao = 0

and then compute the terms

q = (a_ - 3al)/9, r = (2a_ - 9a_al + 27a0)/54,

The three roots for c are then given by

C1

C2

C3

Sl,2 = -[r + _ - qa] lh

= (sl + s2) - 1_a2

_ 1(sl + s2) - 1 •1_a2 + z_(_l - s2)v/52

1 1 "1
= -_(sl +s_)- - __a2 (_l - s_)v_
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The eight spectrum relations are given as +v/'_.

These equations can be easily programmed. The difficulty that arises is in choosing

the appropriate square or cube root in both the cubic and quadratic solvers, as well

as the appropriate root from the cubic solver. It is seen that while there are only four

z roots, the formulas give a multiplicity of 144 roots. This is especially acute since

we wish to compute a single zj at a time. The issue is that in computing the n th root

of a complex number z = a + ib = Ae i¢, the phase ¢ = tan -1 (b/a) has an ambiguity

of Nr.

We remove this ambiguity by keeping track of the total phase. That is, starting

with some value and with reference to the unit circle in the complex plane, as the

wavenumber goes from the 4 th to the 1u quadrant the total phase is increased by 2_.

Algorithmically, we compute complete modes separately at each m. Starting at a large

value of frequency, we work toward the lower frequencies, keeping track of the phases.

The root c is chosen as the one that had the largest real value initially. Approximate

spectrum relations are useful here in identifying the appropriate modes. This scheme

works quite robustly when the frequency decrement is not too large. Periodic checks

with an iterative root finder helps confirm the correctness of the roots. It must be

said that determining the spectrum relations is now a significant operation in itself,

and unlike the previous reported cases, they are no-longer computed on-the-fly as

part of the structural analysis.

An idea of the variety of behaviors is shown in Figure 2.2 for a value of _ = 2_m/W

with m = 40. In this and the remaining examples, we consider an aluminum shell

that is 25.4 mm (1.0 in) thick with a radius of curvature, R = 254 turn (10.0 in). Also,

we take W = 20 m (800 in). Using these values, the curvature has a significant effect

on the spectrum relations. The figure shows for the first four spectrum relations;

these correspond to propagating waves, and are characterized by a negative imaginary

component.

Not surprising, there are many branch points in the spectrum relations. We clearly

see three cut-off frequencies but what is interesting is that two of them are associated

with k2, the in-plane shear dominated mode. Note that both k2 and k4 have a

negative real component at low frequencies and it might therefore be thought that

this violates the radiation condition for waves propagation in the positive direction.

In our approach, the wavenumbers always have an imaginary component even

predominantly real-only modes such as ka have an imaginary component arising from

the damping. Thus the identification criterion is based on dissipation of energy in

the positive direction. A negative real component is expected to lead to a standing
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wave.

It isdifficult to get aclearideaof thecomplete(i.e., asm varies) spectrum relations

from Figure 2.2, it is useful, therefore, to introduce an approximation that will help

to delineate the separate contributions. An approximation that is reasonable for thin

shells of large radius is given by

1 _2+ k_+
1 _2 k_- 2m 4R' m (2.10)k_= k_ m

3 _2 Ik _ + 9 _

where k_p = w2p(1- v2)/E, k2s = w2p2(1 ÷ u)/E, and k_ = w2ph/D. The first

two are the membrane dominated modes and recover the plots shown in Rizzi and

Doyle (1992) when R is very large. The third and fourth modes are the flexural

dominated modes and for large R they recover the flat plate spectrum relations given

by Doyle (1997). In comparison to the uncoupled modes, the major effect of the

curvature is in the longitudinally dominated modes because the cut-off frequencies

are affected and hence delay the formation of real-or_ly wavenumbers.

Since the spectrum relations are relatively insensitive to R at large frequency,

Then these approximations are quite useful in identifying the modes as determined

by the root solver.
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2.4 Spectral Element Formulation

When the number of degrees of freedom is large, we need an organized way to handle

establishing the shape functions and the element stiffness. The cylindrically curved

shell segment is such a case and we take this opportunity to develop an appropriate

matrix scheme.

Consider a segment of shell of length L in the hoop direction. We begin by

expressing the displacements as

_(s) = A(Ihle -_k_ + B¢_2e -_k2_ + ... + G_re -_E_(L-_) + H(P_Se--_k'(L--_t2.11 )

with similar expressions for _3,_, and ¢. The length is introduced to include reflections

coming from a boundary located at s = L. This displacement solution can be re-

written as

{_(s), _(,), _(_), V3(,)}T = {u}(,)

= {(i)}lAe-/k,s+... + {(_}sHe-ik4(L-_)

We will re-write this in an even more compact matrix form; so as to make the matrix

notation more accessible, we will take the developments of the rod as the archetype

and use its notation (except changed to matrices). The 1-D solution for a rod is

represented by Doyle (1997) as

fi(x) = [e-ik'*]A + [e-ik'(L-*)]B

where A and B are associated with the forward moving and backward moving waves,

respectively. The displacement for the shell segment is written as

{H}(s) = [42A][e(s)J{A} + [(I)BI[e(L- s)J{B}

were [(I)m] or [(I)B] are the [4 x 4] partitions of[ (I) ] and

I-e(*)J---

e -ikls 0 0 0

0 e -ik_s 0 0

0 0 e -ikas 0

0 0 0 e -ik4s
{X}{E}B {B}- F' {A}= C ' G

D H

We wish to replace the vectors {A} and {B} in terms of the nodal displacements at

s = 0 and s = L. That is, we introduce
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with similar, but subscripted '2', terms at s -- L. We write this in matrix notation as

{_,, _,, _,, _,}T= {_}, = {u}(s = 0)

{_, _2,_1, _2}T= {_}2= {u}(s = L)

Solving for the coefficients gives

bi}_} =

= [(I)A_[e(0)J{A} -[(PB][e(L)J{B}

= [_bA][e(L)J{A} -[(I)B][e(0)/{B}

[[Gll] [G121 {?_}l

where each partition of [ G ] is of size [4 x 4]. We are now in a position to write the

displacements in terms of the shape functions. They are

{U}(s) = [g(s)],{,_}, + [g(s)]_{,_}_ (2.12)

where the [4 x 4] matrix of shape functions are defined as

[g(s)h = [@A][e(s)J[G,,] + [@B][e(L -- s)J[G2j]

[g(_)]== [,_A]re(:)J[C,2]+ [eBlre(L- 8)J[a==] (2.13)

There are a total of 4 x 4 x 2 = 32 shape functior.s. While not obvious from the

above, it turns out that, even in this general case, the collection of shape functions

associated with the degrees of freedom at the second node are the mirror image of

those associated with the degrees of fl'eedom at the first node. The results for the

throw-off element are simply are simply those associated with [Gll]. These formulas

can be used to recover all the shape functions alread" derived in the cited references.

By way of example, Figure 3.6 shows the g_3(s) c(,s(_my) shape function of a 270 °

shell segment; this shape function is associated with the tbl degree of freedom and

thus can be plotted as a radial displacement off the original shape. These shape

functions are similar in concept to conventional finite element shape functions except

that they are frequency and wavenumber dependent, are typically complex, and can

represent the behavior of very large segments. Th,: other shape functions behave

in a similar manner. It is clear from this figure ant from the above developments,

that once the nodal degrees of freedom are determin,:d then the shape functions can

be used to compute the responses at any intermediate locations. This is a crucial

attribute since the segments can be very large.

The next step in the element development is t,} derive a stiffness relation for

the shell segment. The process is simply that of expressing the resultant forces and

moments from Equation (2.5) in terms of the displacement solutions given in Equa-

tion (2.12). We write these resultants in matrix form as

1 M{y}(s) : {N. + _., N_, V_, M.} %) : [ O]{U}(_)



42

where [ 0 ] is the matrix collection of differential operators of size [4 x 4]. After

substituting for {/X} (s) in terms of the shape functions get

{7}(s) = [ 0 ][g(s)],{_},+[ 0 ][g(s)]2{_h

_-- [(_g(8)],{?_}l-Jr-[Og(s)]2{(t}2 (2.14)

Relating the member resultants at s = 0 and s = L to the nodal loads at the same

locations leads to the stiffness relation

/{F}2 [[+Og(L)]I [+Og(L)]2 {7/}2

or simply {/_} = [1¢(w,_)]{5} where

{Y}= {£, Yy,,_, M,; £, Yy_,¢_,M2}T, {_} ---{_,, _,, _,, _,; _, _2,_, ¢_}T

and [ /_ ] is the [8 x 8] dynamic element stiffness matrix. This stiffness matrix is fre-

quency and wavenumber dependent, complex, and symmetric. The stiffness relation

for the throw-off or one-noded element is simply

{Y}, = [-og(o)],{_}, = [_(_,_)]{_}, (2.16)

The stiffness matrix in this case is of size [4 x 4]. These stiffness relations can be used

to recover the results already presented in the cited references.

For illustrative purposes, Figure 2.4 shows the normalized k11, k22, /_a3, and /_44

diagonal terms for the same shell used to illustrate the shape functions. As is typical

with spectral elements, they exhibit a very large dynamic range. The normalizations

are with respect to the stiffnesses for straight thin beams (Doyle, 1991) but modified

for plates. That is, they are presented as

[_u/(Eh/L) , [_22/(Gh/L) , k33/(12D/L3) , k44/(4D/L)

Note that the/¢u stiffness is substantially less than the static values, and it is only

after the cut-off frequency (_ 3 kHz for m = 0) does it become greater than unity.

On the other hand, _:3a is always significantly larger than the static straight value;

this is because the L a in the denominator predicts an inordinately small static value.



43

2.5 Point Excitation of a Shell

The advantage of the curved element is that it can be combined with other elements

-- either flat or curved -- to form significantly more complex structures. Danial and

Doyle (1994, 1995) discuss aspects of the computer programming structure required

for multiply connected spectral elements; they also show how the spectral element

method can be hosted on a massively parallel machine. The variety of possibilities

is too great to pursue here, so we will be content with two short examples. Both

involve the point excitation of a complete cylindrical shell but the latter shifts the

boundaries so as to explore the nature of the reflections.

We form the complete cylinder by combining two curved elements of the same

material properties each of which is a half-circle. Because of symmetry, we could

model the shell with a single half-circle element or as a single whole-circle element.

In the latter case, half of the applied load must be placed at each node and the extra

conditions of ul = 0, ¢1 = 0; u2 = 0, ¢2 = 0 be imposed. The two element model

was chosen so as to verify the assemblage process.

The elements can be joined at the common nodes by merely summing together

the appropriate dynamic stiffness matrix components to form a global stiffness matrix

[/_ ]. We must therefore first rotate each element stiffness to this global system. This

must take into account that the ends of the curved element are oriented differently

to each other and an appropriate scheme is illustrate, t by Bilodeau and Doyle (1997).

The global stiffness matrix is then simply formed by adding the two global element

stiffness matrices together.

With the elements connected, we can now determine the responses due to a point

excitation. The input force history used is the same as used by Danial et al (1996): it is

a pulse of duration of about 120 #s, and has a frequen,:y content of about 16 kHz. The

velocity reconstructions for three points, _ = 0°, 90", 180 °, along the circumference

are shown in Figure 2.5. For comparison purposes, the same shell was modeled using

64 flat spectral elements. The two sets of results are indistinguishable even though

there are very many reflections. It is worth pointing cut that when fewer fiat elements

were used the results deteriorated as the time incre_Lsed. This shows the significant

computational savings in using the curved element.

There are obvious multiple reflections occurring The waves travel around the

circumference and interact with each other. We cen get an alternative insight by

looking at the system response function G where fi = 6/5 and/5 is the input load.

Note that this facility is an integral attribute of the spectral element formulation.
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From Figure 2.6, wecan seethat many resonancefrequenciesare being established.

Thesewould be the frequenciesof interest if an impulse/modal analysisexperiment

vibration experiment were being performed. It is interesting to note that the w

response at 0 ° and 180 ° exhibit similar resonant behavior, but the response at 90 ° is

missing many of the intermediate resonances. A significant peak appears at about

3.3 kHz; we now look further at this.

We wish to explore the effect of the reflections on the formation of the spectral

peaks. To do this, we will model the cylinder as a sequence of increasing elements but

of the same radius -- the cylinders can be viewed as forming helical coils. The net

effect is to place Node 2 further and further away from Node 1. The final model is

a single throw-off element. We use the same broad band excitation and the velocity

reconstructions are shown in Figure 3.2. There are two points of interest. First,

note how all traces have the same initial behavior -- this is the duration before any

reflections return. The 180 ° element shows the most reflections and these diminish

with increasing element size. The second point of note the trailing oscillatory behavior

even for the infinite element. Although the force excitation lasts less than 200 #s, the

plate continues to oscillate in an almost resonant like fashion. Actually, a standing

wave has been established.

A different view of these behaviors is obtained by looking at the velocity responses

in the frequency domain. It is clear in Figure 2.8 that there is the formation of

an increasing number of spectral peaks as the element length is increased. This is

expected but what is interesting is a peak in the w-velocity response in the infinite

length case. An analysis of the amplitude ratios shows that this peak is coming

entirely from the first mode even though the response overall is dominated by the

first mode. What is happening is that the curvature acts effectively as a continuous

boundary and sets up a standing wave.

The flexibility of the spectral element approach has allowed us to view the problem

of the impact of a cylinder as one of wave propagation or vibration. This comes about

because of the convenience in alternating between the time and frequency domains.



45

2.6 Discussion

A spectral shell element was developed that extends the variety of problems the

spectral element method can handle. It was shown to be accurate and certainly

more computationally efficient than using multiple flat plate elements. The element

developed possesses all of the features of the spectral element method which make the

method desirable for solving dynamic problems. Primary among these are that the

element can be very long and that the frequency domain formulation allows the system

response functions to be determined automatically. This latter attribute, along with

the fast Fourier transform, enables a duality between the time domain and frequency

domain to be presented conveniently. Information not readily seen in one is often

detectable in the other. The example problems demonstrate these features.

One of the challenges that arose during the development was the problem of

determining the spectrum relations. Even though formulas for the solution of quartic

equations were derived, it is not always certain which branch should be chosen after a

branch point occurs. In the quadratic case, which occurs for flat plates, the ambiguity

is removed by adding damping. This becomes essential in the general case so that

the phase of each kj(w, _) can be tracked correctly -- the effect of the damping is to

separate each of the modes. The damping is also necessary in order to distinguish

between the forward and backward moving waves.

Based on the problems we have considered, it is clear that once there is more than

one connection in a structure, it is essential to have _ matrix methodology to handle

the many unknowns. The spectral element approach presents itself as a well founded

matrix method that embodies a number of efficiencies we have long associated with

the conventional finite element method. For the range of problems they are suited

for, they show great efficiencies and conveniences. Being formulated in the frequency

domain means it is also ideally suited for energy flo_ _ analysis of the type described

by Langley (1994). It is also appropriately formulated for tackling the solid/fluid

interaction problems as occur in structural acoustics. A beginning in this direction is

described by Bilodeau (1995).

The approach as presented so far has difficulty "vith localized discontinuities of

properties or geometry unless the have a very siml:le geometry. At present, there

is also the restriction that lateral boundaries must be relatively far away. Similarly,

there is a restriction that the material properties and geometry in the lateral direction

be uniform. It is hoped to tackle these issues in the luture.
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Figure 2.1: Coordinate system and displacements for a segment of cylindrical shell.
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Figure 2.2: Spectrum relations kjh for a shell segm,'.nt with R = 254mm and h =

25.4 ram, and m = 40.
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Figure 2.3: Samples of shape functions for a 270 ° shell segment.
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Figure 2.4: Normalized stiffnesses _:ll, /_2, ]_33, and k44 for a 270 ° shell segment.
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Figure 2.5: Velocity reconstructions for the point excitation of a closed cylinder.
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Figure 2.6: System response functions for the point _xcitation of a closed cylinder.
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Figure 2.7: Velocity reconstructions at y = 2R for the point excitation of shells of
different circumference.
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of different circumference.



Chapter 3

Acoustic Radiation from Plate

Structures

Spectral elements, which incorporate the effect of fluid loading on the structure, are

developed for analyzing acoustic radiation from dynamically loaded extended plates.

These elements may be conveniently joined to form complex thin-walled structures

composed of many segments.

54
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3.1 Introduction

There are many practical situations where the interaction between the dynamics of a

structure and a surrounding fluid is of great importance. The most obvious is noise;

noise is the propagation of acoustic energy through the fluid. The interaction can also

influence the response of the structure itself; examples include dams, chimney stacks,

ships, fuselages, propellers, and transmission cables. Fluid Loading problems are very

hard to solve exactly, and for geometries and configurations of practical interest it

is essential to be able to make useful simplifying approximations [31]. The purpose

of this paper is to introduce a method being developed for analyzing folded plate

structures immersed in a fluid.

A schematic of the cross-section of the folded plate structures of interest is shown

in Figure 3.1a; the plates extend in the y-direction. Such a structure when immersed

in a fluid can experience three types of loading. The first is the structure-borne

excitation caused by the propagating structural waves. The second is a pressure

loading arising from some source within the fluid; this acts as a distributed external

loading on the structure. The third load is the 'self-loading' or fluid loading caused

by the moving structure interacting with the fluid. This also acts as a distributed

pressure loading but, since the magnitude depends on the motion of the structure, it

has the effect of coupling the structure and fluid motions. Additionally, these enclosed

structures are viewed as having two distinct regions; an interior region and an exterior

region. The interior region has loadings due to both the fluid and the radiation from

the vibration of other plates, whereas, the exterior region only experiences loadings

from the fluid. In this paper, we restrict the fluid to be only on the exterior of the

structure so that we can concentrate on the structu:'al dynamics, fluid loading, and

radiation into the fluid. The reverberation problem f)r enclosed spaces is the subject

of a later paper.

Our analysis of the structural dynamics is based on the spectral element method

(References [6, 8, 11] give summaries of the approach as applied to frame structures)

but applied to structures of extended areas. This application to thin-walled struc-

tures begins by combining the spectral analysis for i 1-plane wave responses [19] and

out-of-plane flexural behavior [27] to form a matrix n ethod approach for folded plate

structures [22]. The variety of structural shapes encc mpassed was recently enhanced

by adding a segmented curved shell element [32]. The method has some very use-

ful characteristics. First, it is a frequency domain formulation. Second, it is geared

toward handling very large areas. That is, it is a c(,unterpoint to conventional ele-
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mentswhich alwaysmodel a regionasa collection of very small sub-domains.Third,

it is stiffness formulated. This means the processof assemblageto form complex

structures is relatively easy.

The solid/fluid interaction problem is very intricate [33,34,35]; many of the finer

points are coveredin the excellent summary paper by Crighton [36]. The essential

difficulty is that the two mediaare coupledin a convolution sense-- this is unlike a

plate on an elastic foundation, say. We tackle the interaction problem by incorporat-
ing the effectof fluid loading on the structure directly into the element formulation.

In this way, the structural formulation for in vacuumdynamic responseis unaffected.

Our approach is approximate but is shown to be reasonablyaccurate for medium

fluid loading. Radiation from these extended plates is handled very conveniently

by utilizing the shapefunctions associatedwith the spectral elements. In fact, this

computation of the pressureresponsein the fluid is performedas a post-processing

operation. The challengewe have here is to match the motion of the finite plate

to that of the fluid. But the domain for the fluid is (at least) the half spaceabove
the plate and is considerablylarger than the length of the plate itself. Therefore, to

match the plate and fluid boundaries,we must extend the plate boundary. We do

this by assumingthe displacementscan be matched by imposing w = 0 outside of

the finite plate. We further assume that this can always be done even if the plate is

not physically baffled but is attached to other plate segments. The idea is illustrated

in Figure 3.lb.

Our interest in this paper is on aspects of the structure/fluid interaction, therefore

for simplicity, we take the plates and loading as being uniform in the y-direction. We

also have in mind aeronautical structures as typified by aluminum in air -- this corre-

sponds to a relatively light fluid loading situation as compared to naval applications.
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3.2 Plate/Fluid Interaction: Infinite Plate

As a prelude to considering finite plates, we first look at the response of an infinite

plate with fluid loading on one side. This will allow as to establish the context of the

approximations to be made in the next section. The plate lies in the x - y plane, but

for simplicity we take the plates and loading as being uniform in the y-direction.

The governing equations for the deflection w(x, t) of a thin plate and the resulting

pressure p(x, t), when a mechanical loading q(x, t) is applied, are

04w Ow " 02w 02P (3.1)
D-_x4 +_h"-_ + ph--_- =q(x,t) -p(x,z=O,t ), BV2p= p_--_

where h is the plate thickness, D the plate stiffness, p the plate mass density, B the

fluid bulk modulus, and p_ the fluid mass density. We have also added some damping

to the structure through 7. The interface conditions between the plate and fluid are

wplate(x) = wf_uid(X, z = 0), Op(X,ozZ = O) = --P_ 02W(Z,ot 2z= 0) (3.2)

Our solution technique uses spectral analysis; this a:_sumes solutions of the form

N N n2_ (3.3)w(x,t) = _ _(x,_.)e _.t , p(_,z,t) = _(_,z,_.)e _o_, _" --- T
n

where T is the time window for the discrete transform. Typically, N ranges as

512 ._ 4096. When these are substituted into the governing differential equations,

we get

D d4_(X)dx4 ph_2_v(x) = _(x) - iS(x, z = 0) , BV215 + p_w2_ = 0 (3.4)

where w2 = w2 _ iw_?/p and the interface relations become

_,o_(x) = _,_,_(x,z = O) O_(x, z = O) = _po_(x) (3.5)
' 6z

This set of equations will be our primary equations governing the dynamic response

of the plate and fluid.

Consider a single infinite sheet with fluid only on one side and with a line loading

along x = 0. Let the plate deflection and loading be represented in the form

M M m27r

dr(x) = _ flame -i{'_ , (l(X) = _ _lme- i_'_ , _,_ -- ----_-- (3.6)
TtTt Tn

where W is the space window for the discrete tra_ sform. Typically, M ranges as

500 ,_ 2000. The pressure has a similar representation, except that we must realize

it is two-dimensional

M

_(_,z): E_ '_ _ '_, k_- _- _ (37)
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This corresponds to pressure waves radiating from the plate surface in the positive

z-direction. The pressure boundary condition at z = 0 is now

-ik_fim = p,_w2_m

Substituting these into Equation (3.4) gives the displacement of the plate and the

pressure in the fluid as, respectively,

pa _2

_(x, z) = Z q-me-i¢'_x
-ikz (3.8)

m [D_4 _ phi2 + iw_Th PAW2]
ikz paw 2

As with the case of a plate in a vacuum, _,_ is chosen to be 1.0 to represent a line

load at x = 0.

Figure 3.2a shows the resulting pressures 100 mm from a 2.5 mm thick aluminum

plate subjected to a line loading. The history of the loading is a smoothed triangular

pulse of duration about 150 #s and having frequency content of about 16 kHz. The

pressures exhibit an oscillatory behavior where the period of the zero crossings is

almost constant. Figure 3.2b looks at the system response function I(_] where the

pressure is related to the applied resultant load as 15= 6/5. The most striking feature

of the pressure is the spectral peak in the vicinity of 5 kHz -- this corresponds to

the coincidence frequency as discussed next. Note that the peak gets sharper further

away from the impact site, and that there is more filtering before the coincidence

frequency.

The coincidence frequency occurs when the phase speeds of the plate bending

wave and of the acoustic wave in the fluid are equal [33, 34] and is given by

wc = cav _ - 12(1 - u2) , Co = , Co =_ (3.9)

The significance of the coincidence frequency is that wave components in the plate

above this frequency are radiated easily into the fluid as seen in Figure 3.2. The

coincidence phenomena depends on the extent of fluid loading, thus it is usefld to

have a measure of this loading. Following Reference [36], fluid loading is charac-

terized by two independent parameters: a mass ratio a = p,,ca/phw and a speed

ratio M = c/ca = k,Jk. We have M = 1 at coincidence. Both parameters are fre-

quency dependent; we can arrange for only one parameter which is varied with w by
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introducing

= p_oP°c°_ P°_1412(lp- ._)
The parameter _, called the intrinsic fluid loading parameter, is the same for all plates

of a given material embedded in a given fluid. This is typically small with values such

as

steel/water: 0.130, aluminum/air: 0.002

In the examples that follow, we are primarily interested in the aluminum/air case.
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3.3 Waveguide Modeling with Fluid Loading

Our goal here is to formulate the structural dynamics problem in terms of a waveguide.

If we can replace the wavenumber transform solution for the plate response given in

Equation (3.8) with a waveguide solution then that saves a summation operation.

But much more importantly, it allows us to terminate the waveguide and thereby we

are in a position to assemble complex structures. The difficulty is that while the effect

of the fluid loading is that of a distributed pressure, it's non-local character makes

it different from the pressure caused by a distributed spring, say, and hence we must

invoke special procedures.

To begin our construction of a plate waveguide, we ask if it is possible for free

waves to propagate in the plate immersed in a fluid. That is, we seek wave solution for

the plate of the form v) = _e -ik* when the loading q is zero. This implies a pressure

response of

: P e-ik_e -ik_z , kz = - k2' k2a -- c_

It must be borne in mind that as long as kz is chosen as above then irrespective of

the value of k the fluid equations are satisfied. When both tb and i6 are substituted

into the governing equation we obtain the characteristic equation

p,,w 2
-- 0, /32 _-- _h (3.10)(k 2 -/32)(k2 +/32) ikzD

The third term in the first equation describes the effect of the fluid loading. A detailed

explanation of the significance of each term is given by Crighton [36] and the roots of

this characteristic equation have been studied extensively in References [37, 38, 31].

Contour plots of the characteristic equation are shown in Figure 3.3. It is seen that

there are four dominant roots similar to a plane in a plate.

When the response of Equation (3.8) is viewed as a contour integral [39] in the

complex planes of Figure 3.3, it has contributions from the poles and a contribution

which arises from the branch cut associated with kz. This latter contribution is most

significant at impact points and corners [36]. By neglecting this contribution, we

would then in a position to replace the responses with just the pole contributions.

That is, we will have a waveguide representation. To quantify this contribution, we

consider the response of a 25 mm thick steel plate in a fluid of density 138 g/m 3 and

modulus 0.37GPa subjected to the pulse line loading. This gives an intrinsic fluid

loading of e = 0.020 which is an order of magnitude larger than the cases of actual

interest. Figure 3.4 shows the responses with and without the branch cut contribution.
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The agreementof the two solutions is very good with somedeviations occurring at

the load site that areprimarily in the low frequencyrange. This is confirmed at the

large x locations. We therefore conclude that in the case of an aluminum plate in air

the branch cut contribution can be neglected.

Numerical solutions for the roots of the characteristic equation are shown in Fig-

ure 3.5 as circles along with the in vacuum roots indicated as the dashed lines. These

plots, which are for 2.5 mm aluminum plates in air, show that the fluid loading pri-

marily has the effect of altering the imaginary part of the first mode. We see that at

coincidence and beyond, the effect is of increased viscous damping -- this is consistent

with the observation that the fluid is receiving more of the energy at these frequen-

cies. But otherwise the behavior is very similar to the in vacuum behavior. That is,

the pole contributions are associated with root kl which corresponds predominantly

to the propagating flexural wave, and with root k2 which corresponds predominantly

to an evanescent flexural wave.

Making the assumption that there are only two dominant structural waves allows

us to obtain approximate analytical expressions for _he roots as

k2 _ +i

pa_) 2

_2+ 2Dik_lfl 2 ' kzl = _/ k_- /32

pa_ 2

f12 + 2Dik_2_ 2 , k._ - _ +/32 (3.11)

These approximations are also plotted in Figure 3.5. There is very good agreement

with the exact numerical roots over the entire frequency range including the region

near coincidence.

By incorporating the fluid loading term directly into the modified spectrum rela-

tions, we are now in a position to replace the doubh summation wavenumber trans-

form solution by a single summation over frequency. This is useful when an enclosed

structure is viewed as having two distinct regions; an interior region and an exterior

region. The interior region has loadings due to both the fluid and the radiation from

the vibration of other plates. However, the exterior :egion only experiences loadings

from the fluid. Using the modified spectrum relaticns, the fluid loading for the ex-

terior problem can be accounted for without consid,:ring the fluid response. In this

way, the solid/fluid interaction problem is partially decoupled.

We conclude this section by illustrating the diffeJ ence the waveguide formulation

makes. The transverse displacement of one half of th _ infinite plate with two forward
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propagatingwavesis expressedas

_v(x)= Ae -ik_ + Be -ik2_

where kl and k2 are the modified spectrum relations presented in Equation (3.11).

The boundary conditions for this problem are that at x = 0 the slope of the plate is

zero (Offl/Ox = 0) and the applied load is related to the shear by

x-
-_P = = -D jfSx3

The response of the plate is then determined to be

_(x) = 2Dikx(--ff2_ - k_) e-'k'_ k2 e-'k2_ (3.12)

where most quantities are frequency dependence. This solution is to be compared to

Equation (3.8). The responses of Figure 3.4 were computed using this solution.

It is clear that the waveguide approximate modeling for plates in a surrounding

fluid is accurate and efficient.
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3.4 Modeling of Finite Plates in a Fluid

We now illustrate how the waveguide modeling allows us to tackle the very difficult

problem of the response of finite plates in a fluid.

We begin by writing the general transverse displacement for a typical plate seg-

ment of length L in the form

ff)(x) = Ae -ik_x + Be -ikaz + Ce -ikffL-x) + De -ik=(L-z)

where A, B, C and D are constants to be determined from the boundary conditions

on the segment. Also, by using the modified spectrum relations, we claim that this

adequately represents the behavior of a plate immersed in a fluid. It is advantageous,

when dealing with finite or multiply connected structures, to use a solution formu-

lation that already incorporates the connectivities. The end conditions on the plate

segment are

dffv(O) _ _, , ff;(L) = ffv_, dff;(L) _ _b2
ff;(O) = wi , dx dx

Solving for the coefficients in terms of the nodal deg :ees of freedom allows the trans-

verse displacement of the plate to be re-written in the form of a collection of shape

functions

_v(x) = [h(x)ffh + _h(x)L¢, + g3(:_)w2 + _4(x)L_2 (3.13)

The frequency dependent shape functions _j(x, w) a:'e given as

gl(X) _--- [TI_tl(X) q-7"2h2(x)]/A

_(_) = [r,_(_) + r_,(_)]/a
_4(x) = -[_,£,(_) + _£3(_)]/a

_, = i(k, - k_)[1- e-_'%-_L], r2 = i(_1 + k2)[1 -- e-k'Le-k2L]

where n = -(r_ + r 2) and

]_l(X)= q-ik2[e-iklz_ e-ik2Le-ik,(L-z)]_ iklle-ike__ e-iktLe-ik2(L-x)]
h2(x) = --ik_[e-ik_Le-ik'*-- e-ik'(L-*)]+ iklIe-ia'Le-'k_*--e-ik:(/-*)]

£_(_)= [e'k_Le-''_'_+ e-'_'(_-_)]-- le '_'_e-'_" + e '_(_ ")]

(3.14)

As an example, the shape functions _1 and _ are _hown plotted in Figure 3.6 for

a number of frequencies. The shape functions occult in pairs where g3 and g4 are

the mirror images of gt and _2, respectively. These shape functions are comparable
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to those of the conventional finite element method except that they are frequency

dependent and can representvery large areas. References[11, 32] illustrate how
theseareusedasthe basisfor the spectral elementrepresentationof the folded plate

structures, thesereferencesalsoshowthe assemblageprocedures.

What we want to look at here is how a typical plate segmentradiates pressure

into the fluid. The challengewe havehere is to match the motion of the finite plate

to that of the fluid. But the domain for the fluid is (at least) the half spacez > 0 and

-co < x < co which is considerably larger than the length of the plate. Therefore,

to match the plate and fluid boundaries, we must extend the plate boundary in the

x direction. If the finite plate is baffled, that is, extended on both sides with very

stiff material, then the displacements can be matched by imposing w -- 0 outside of

the finite plate. We will assume that this can always be done even if the plate is not

physically baffled but is attached to other plate segments. The schematic is shown in

Figure 3.lb.

At the surface of the plate, z = 0, the fluid displacement must be equal to the

plate displacement. By extending the plate deflection over the full space window of

the fluid, we can then give it the spectral representation

ff;(x) = Z W'ne-ib'_x

m

Applying this to the shape functions gives

#Jr,, = _vl_lm + L_blO2m + _b2_a,_ + L_b2_4m, [?jm = fw [lj(x)e-i_'_dx (3.15)

These integrals are easily evaluated since 0j (x) contain only exponentials. The shape

functions Oj(x) are zero outside the length of the plate element; this is equivalent to

assuming each finite plate segment is baffled to infinity. The continuity of wj and Cj

between segments ensure continuity of the fluid field. The response of the fluid now

has the spectral representation

• . ,_ Pa _32 ~ ^-ik_ze-i_mx
: C me-'k ze-' m : --wm kz=_ -m ' -ik_ '

These, in combination with Equation (3.15), relate the fluid response at any point to

the plate nodal degrees of freedom. If there are many plate segments, then the total

response would be the sum of the contributions from each segment. We will illustrate

these formulas with the example of a finite plate.

In piecing together the solution for the finite plate of Figure 3.1c, we treat the

plate as having two segments with the boundary conditions

segment 12: wl = 0 ¢1 = 0; W 2 = Wo, ¢2 = O
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segment 23: wl = Wo, ¢1 = 0; w2 = 0¢2 = 0

This leads to the solution for the fluid displacement written in terms of the central

deflection of the plate as

m

Note that the representation for the first plate segment must be shifted an amount

L. The pressure is given by

p,w 2 [ 7. _-i_mx] e-ik.z
[g3rne -i_'_(x+L} "]- ylrnV ]z) =

m

The shear relation at the load location is ½[:' = -V = D_o"'. This gives the central

deflection as
P

2D_,"'(0)

With reference to Figure 3.1c, it is worth emphasizing that although w is physically

continuous at Node 2, the above representations have a discontinuity. That is, seg-

ment 12 is discontinuous to the right while Segment 23 is discontinuous to tile left.

Hence this example is a good first test case of our scheme.

To test the validity of our approximations, a p!anar finite element model of a

baffled plate in a fluid was constructed for the pro[lem shown in Figure 3.1c; only

a finite fluid domain was modeled. The plate is 25 mm thick steel and the fluid has

the properties such that e = 0.02. Figure 3.7 shows a comparison of velocities of the

plate and the fluid. The agreement is quite good up to the time when reflections come

from the far boundaries of the fluid -- the spectral solution has no such boundaries.

The agreement is especially good for our purpose when it is realized that the fluid

loading corresponds to a loading factor nearly ten ti:nes that of our cases of interest

of aluminum plates in air.

These equations were also applied to the case of a finite 2.5 mm thick aluminum

plate in air. The responses for the plate are show[ in Figure 3.8; the presence of

multiple reflections are obvious. Figure 3.9 shows the,:orresponding frequency domain

behavior where the reflections give rise to multiple _;pectral peaks. Also shown are

the resonance frequencies for a vibrating plate in vacuum, it is clear that the impact

has excited many of the symmetric modes of vibration. The pressure responses for

the fluid can also be seen in Figure 3.8. Similar to t_ e plate response, these indicate

the presence of multiple reflections occurring in the _late. This figure also indicates

that the baffled finite plate not only excites the fluid _irectly in front of it but also at
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a distance along the baffle. The pressureat x -- 2L, z = 0 is non-zero even though

the plate is baffled at that location -- this is further indication that, in fluids, the

relation between the pressure and displacement is non-local. The frequency domain

depiction of these responses is shown in Figure 3.9. It can be seen that the frequencies

at which the structural resonances were present in Figure 3.9 are readily transmitted

into the fluid.

Intuitively, we might have thought that the response should be largest along a

line normal to the plate. The responses shown in Figure 3.8 indicate that this is not

so. Furthermore, Figure 3.9 shows that it is even frequency dependent. Figure 3.10

shows the directivity patterns at a number of frequencies; the near field behavior was

computed from the full solution with r -- 2L. It is clear that these patterns are very

sensitive to direction when the frequency gets close to coincidence. Also shown are

the deflected shapes of the plate at each frequency. These shapes indicate an almost

sinusoidal plate deflection except at the center and edges -- these are the points of

significant radiation.
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3.5 Discussion

The methods discussed in this paper is a first step in extending the spectral element

method to include structure/fluid interaction problems. The key step is that by

incorporating the fluid loading into the spectrum relations allows us to maintain

the element formulation. This is important because the spectral element approach

presents itself as a well founded matrix method that embodies a number of efficiencies

we have long associated with the conventional finite element method. For the range of

problems they are suited for, the spectral elements have been shown to conveniently

model wave propagation in structures made of multiple panels. Furthermore, the

spectral element is eminently suited for hosting on massively parallel computers [28,

21].

There are many more developments needed. The most important of them are:

Verify the radiation approximation from re-entrant edges, Implement radiation from

curved surfaces, and, Implement the book-keeping necessary for solving reverberation

in a enclosed space. We will to report on these developments in future papers.
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(a)

x _ q=-P

plates: D, ph

interior

fluid: B, pa

exterior

(b)
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• .. ",
%. %

....,:_'\ baffled extensions
%'.. %_. ...............................

£

(c)

f,u_d:B,po © ® @ _

plate: D, ph , , . baffle
L L

Figure 3.1: Geometries of the plate structures with fluid loading. (a) Schematic of

cross-section of folded plate structures of interest. (b) Treatment of plate connections

as baffled extensions. (c) Modeling of a finite baffled plate as two plate segments.
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Figure 3.2: Time and frequency domain responses for the line loading of an infinite

plate. (a) Fluid pressures p(x,z = L,t). (b) System response function IG(x,z = L)I

for pressure.
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Figure 3.4: Comparison of the wavenumber transbrm solution to the waveguide

solution that neglects the branch cut contribution.
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Figure 3.5: Wavenumber behavior for an aluminum plate in air. Left is kl(w), right

is k2(w).
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Figure 3.6: Shape functions gl(x) (top) and _(x) (l:ottom) for a number of frequen-
cies.
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Figure 3.7: Response with modified spectrum relations and comparison with finite

element solution.
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Figure 3.8: Time domain responses for a line loaded aluminum plate of length 2L =

500ram. (a) Plate responses (v(x,t), (b) fluid pressures p(x,z = L,t).
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Figure 3.9: Frequency domain responses for an impacted plate of length 2L =

500ram. (a) Plate responses liwzb(x)l, (b) fluid pressure I_(x, z = L)I.
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